

Synthesis of Novel Porphyrin-Based Biscalix[4] arenes

Miroslav Dudič, a Pavel Lhoták, a* Vladimír Král, b Kamil Lang, c* Ivan Stibora

^aDepartment of Organic Chemistry, ^aDepartment of Analytical Chemistry, Institute of Chemical Technology, Technická 5, Praha 6, ^cInstitute of Inorganic Chemistry, ASCR, 250 68 Rez, CZECH REPUBLIC Received 6 May 1999; accepted 15 June 1999

Abstract: A novel method for the preparation of porphyrin-based biscalix[4]arenes has been developed, starting from appropriate aryldipyrrolylmethane and calix[4]arene monoaldehyde. The condensation reaction in the presence of BF₃·Et₂O leads to the title compounds in good yields (30-54%). Novel derivatives represent the first example of porphyrin-based calix[4]arenes with directly connected aromatic subsystems of both moieties. The photophysical properties of biscalix[4]arenes are presented.

© 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Calix[4]arenes; Porphyrins; Fluorescence, Absorption spectra

Calix[n]arenes, a well known family of macrocyclic oligophenols, 1,2 play an important role in modern supramolecular chemistry. Because of their unique three-dimensional shape and good complexation ability they have found many applications in the design of synthetic receptors and sophisticated molecular assemblies. Likewise, the porphyrins are known to be one of the "support pillars" of supramolecular chemistry, having suitable photoactive and electroactive properties for building artificial molecular devices. Therefore, porphyrins with directly linked calixarenes could afford attractive receptors possessing multipoint recognition ability towards noncovalently bound guest molecules.

The tethering of calix[4] arene and porphyrin moieties has been achieved via a spacer molecule. 5 Our aim was

to synthesize a bis-calix[4]arene with a direct linkage between the upper rim and the porphyrin. We believe that the advantage of the titled receptor is strengthening of the porphyrin-guest interaction by the cation- π and π - π attractive contributions⁶ from both calix[4]arene subunits (Figure 1).

It is well recognised that an aromatic unit can be introduced into the *meso*-position of a porphyrin *via* the aldehyde functionalization route.⁷ Hence, monoaldehyde I (prepared from 5,11,17,23-

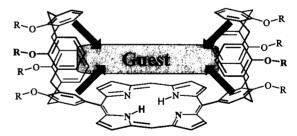


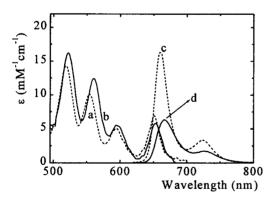
Figure 1: The design of the receptor.

tetrapropoxycalix[4] arene by monobromination, lithiation and reaction with DMF in 63% overall yield) was chosen as the starting compound for the synthesis of novel calix[4] arene-porphyrins (Scheme 1). This compound was treated with pyrrole in the presence of boron trifluoride diethyletherate to give the dipyrrolyl derivative II (73%), a key intermediate for the construction of the porphyrin. Unfortunately, several attempts

Scheme 1: Synthesis of biscalix[4] arenes IVa-f.

to condense II with benzaldehyde IIIa led to a complex reaction mixture, giving biscalixarene IVa as only a minor product (< 10 %). Another approach to biscalix[4]arene IV was therefore investigated. Aryldipyrrolylmethanes Va-f were prepared in high yields (64-85 %) by condensation of the p-substituted benzaldehydes IIIa-f with pyrrole. Overnight stirring of the precursors Va-f and monoaldehyde I with catalytic amounts of BF₃·Et₂O in dry CHCl₃ and subsequent treatment with 2 equivalents of DDQ afforded the titled compounds IVa-f (29-54%).

The structures of IV have been proved using FAB MS spectroscopy where the molecular peaks [M]⁺ or [M+1]⁺ are the most intense ones (IVa 1645.2, IVb 1672.5, IVc 1714.9, IVd 1780.7, IVe 1694.7, IVf 1734.7). The ¹H NMR spectra (CDCl₃) are characterized by two sets of two doublets (J~13,3 Hz) for the axial and the equatorial hydrogens (Ar-CH₂-Ar) of calixarene, i.e., the expected pattern for a monosubstituted calix[4]arene. The porphyrins give typical singlets for the -NH- protons with chemical shifts about -2.8 ppm and corresponding signals in the aromatic region. The formation of the porphyrin moiety was also unambiguously proven by the absorption spectra consisting of the characteristic Soret and Q bands (Table 1).


The spectroscopic properties of the biscalix[4] arenes IVa-f and 5,10,15,20-tetraphenylporphyrin (TPP) are listed in Table 1. The Soret and visible (Q bands) absorption bands of IVa exhibit a bathochromic shift and the ratio of the absorption coefficients of the Q_1 and Q_2 bands is inverted when compared to TPP. The differences between TPP and IVa can be attributed to the electron-donating character¹⁰ of the two -OPr groups of the calix[4] arene phenyl units attached in the porphyrin *meso* position. The presence of the para substituents on IVb-f can affect the absorption spectra according to their electron-donating properties.¹⁰

The most profound substituent effect is observed for IVf bearing two nitrophenyl groups. The Soret band is red shifted to 428 nm concomitant with the red shift of the fluorescence emission bands. The changes in the absorption spectra are accompanied by a strong decrease of the fluorescence intensity (Table 1, Figure 2c,d).

Table 1: Summary of absorption and fluorescence results¹¹ of TPP and IVa-f in air-saturated CH₂Cl₂. Relative fluorescence quantum yields Φ_f^r (Φ_f^r in parentheses measured in MeOH).

	Absorption spectrum						
Porphyrin	$\lambda_{max}/nm (\epsilon/mM^{-1} cm^{-1})^{a}$				Fluorescence	$\Phi_{\mathbf{f}}^{\mathbf{r} \mathbf{a})}$	
	Q_1	Q_2	Q_3	Q ₄	Soret	λ _{max} /nm	
TPP b)	645	590	551	515	418	656, 720	1.00° (0.96)
	(6.2)	(6.4)	(8.1)	(17.3)	(411)		, ,
IVa	651	594	554	519	422	659, 724	1.25 (1.19)
	(6.7)	(4.8)	(9.8)	(13.9)	(349)		
IVb	650	594	555	519	423	661, 724	1.15
IVc	649	594	554	518	422	660, 724	0.87
	(5.4)	(6.1)	(11.3)	(19.3)	(456)		
IVd	650	594	554	518	423	659, 722	1.07
	(5.4)	(6.1)	(10.4)	(19.5)	(453)		
IVe	652	594	558	521	426	663, 727	1.11
	(4.8)	(4.8)	(10.3)	(14.8)	(363)		
IVf	652	596	560	523	428	666, 727	0.67 (0.07)
	(5.9)	(5.6)	(12.4)	(16.1)	_(300)		

a) estimated error: 10 %; b) absorption spectrum¹² in CHCl₃; c) absolute value in degassed methylcyclohexane¹³: $\Phi_f = 0.13$.

Figure 2: Absorption and fluorescence emission spectra of IVa (a, c) and IVf (b, d) in air-saturated CH_2Cl_2 . Fluorescence intensity in arbitrary units:. $\lambda_{exc} = 518$ nm, A_{518} (1 cm cell) = 0.076 ± 0.001 .

This quenching may be due to intramolecular electron transfer from the photoexcited porphyrin moiety to the nitrophenyl moiety located at the *meso* position. This process is thermodynamically feasible and its efficiency increases in polar solvents due to the solvation stabilization of the charge-separated ion pair.¹⁴ In accordance with this, the fluorescence emission of **IVf** is almost completely quenched in MeOH (Table 1), more polar solvent than CH₂Cl₂, confirming that electron transfer occurs within the molecule.

In conclusion, using the simple monoaldehyde I, novel artificial receptors are

easily available. Our synthetic procedure offers direct way to the construction of highly organized molecules well suited for study of molecular recognition behaviour. The complexation abilities of these new compounds are currently under study.

This work was supported by the Grant Agency of the Czech Republic (No. 203/99/1163).

References:

- 1. (a) C. D. Gutsche, Calixarenes: Monographs in Supramolecular Chemistry Vol 1.; J. F. Stoddart, Ed., The Royal Society of Chemistry, Cambridge, 1989; (b) J. Vicens, V. Böhmer, Eds., Calixarenes: A Versatile Class of Macrocyclic Compounds; Kluwer, Dordrecht, 1991.
- (a) S. Shinkai, Tetrahedron, 1993, 49, 8933-8968; (b) V. Böhmer, Angew. Chem. Int., Ed. Engl., 1995, 34, 713-745; (c) A. Pochini, R. Ungaro, in Comprehensive Supramolecular Chemistry, F. Vögtle, ed, Elsevier Science Ltd., Oxford, 1996, vol.2, p.103.
- 3. P. Lhoták, S. Shinkai, J. Synth. Org. Chem., Jpn. 1995, 53, 963-974.
- 4. J. L. Sessler, B. Wang, S. L. Springs, C. T. Brown, in *Comprehensive Supramolecular Chemistry*, Y. Murakami, ed, Elsevier Science Ltd., Oxford, 1996, vol.4, p.311-336.
- 5. For instance: D. M. Rudkevich, W. Verboom, D. N. Reinhoudt, J. Org. Chem., 1995, 60, 6585-6587.
- 6. P. Lhoták, S. Shinkai, J. Org. Phys. Chem., 1997, 10, 273-85.
- 7. A. Lecas-Nawrocka, B. Boitrel, E. Rose, Tetrahedron Lett., 1992, 33, 481-484.
- 8. General procedure for II or V: Aldehyde I or IIIa-f (1 mmol) was dissolved in 40 ml of pyrrole and the solution was then stirred 0.25 h at room temperature under an Ar atmosphere. A catalytic amount of BF₃·Et₂O was then added and reaction mixture stirred for 0.5 h. The reaction mixture was extracted with CHCl₃, the organic layer washed with 0.1 M aqueous NaOH, water and dried over MgSO₄. The evaporation to dryness yielded the crude product, that was purified on silica gel column using CH₂Cl₂/petroleum ether as solvent. Yields: II (73 %), Va (85 %), Vb (81%), Vc (73 %), Vd (85 %), Ve (64 %) a Vf (74 %).
- 9. Typical procedure (preparation of IVd): A catalytic amount of BF₃·Et₂O was added to the solution of I (1 mmol) and Vd (1 mmol) in 200 ml of dry CHCl₃ and the mixture was then stirred 15 h at room temperature under an argon atmosphere. DDQ (2 mmol) was then added and the reaction mixture was stirred for an additional 2 h. The mixture was extracted with CHCl₃, the organic layer was washed with aq. NaHCO₃ and dried over MgSO₄. The crude product was purified on preparative TLC (silica gel) using CHCl₃/petroleum ether (1:15) as eluent to give IVd in 54 % yield. (m.p.: 263-266 °C, CHCl₃-MeOH). ¹H NMR (CDCl₃, 300 MHz) δ : -2.85 (s, 2H, NH), 1.14 (m, 18H, -CH₃), 1.22 (t, 6H, J=7.7 Hz, -CH₃), 2.04-2.24 (m, 16H, -CH₂-CH₃), 3.28 and 3.45 (2d, 2x4H, J = 13.2 Hz, CH₂-eq.), 3.95 (t, 4H, J = 7.3 Hz, O-CH₂-CH₂-), 4.07 (t, 8H, J = 7.0 Hz, O-CH₂-CH₂-), 4.20 (t, 4H, O-CH₂-CH₂-), 4.62 and 4.81 (2d, 2x4H, J = 13.2 Hz, CH₂-ax.), 6.48 (t, 2H, J=7.7 Hz, H-arom), 6.67-6.90 (m, 16H, H-arom), 7.61 (brs, 4H, H-arom); 8.10 (m, 6H, H-arom), 8,68 (br d, 4H, H-arom), 8,66-8.89 (m, 6H, H-arom). MS FAB calcd. 1780.18, found 1780.7 (M⁺). Anal. calcd. for C₁₁₄H₁₁₂N₄O₈F₆: C, 76.92; H, 6.34; N, 3.15; F, 6.40. Found: C, 76.86; H, 6.72; N, 3.36, F, 6.10. Yields of other derivatives: IVa (48 %), IVb (49%), IVc (29 %), IVe (31 %) a IVf (29 %).
- 10. M. Meot-Ner, A. D. Adler, J. Am. Chem. Soc., 1975, 97, 5107.
- 11. Fluorescence emission spectra were measured in the region 550 900 nm using $\lambda_{\rm exc} = 518$ nm and 553 nm. The integrated emission area across the band was corrected for absorbance differences at the excitation wavelength (A₅₁₈ = 0.079 \pm 0.003 and A₅₅₃ < 0.054, 10 mm cell) and compared to TPP in CH₂Cl₂ yielding relative fluorescence quantum yields $\Phi_{\rm f}^{\rm r}$. The fluorescence intensities were corrected by the factor n², i.e. the refractive index of the solvent.
- 12. B. C. Bookser, T. C. Bruice, J. Am. Chem. Soc., 1991, 113, 4208.
- 13. A Harriman, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1978.
- 14. L. Fajari, P. Fors, K. Lang, S. Nonell, F. R. Trull, J. Photochem. Photobiol. A: Chem., 1996, 93, 119.